Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35682195

RESUMO

Adjusting land use is a practical way to protect the ecosystem, but protecting water resources by optimizing land use is indirect and complex. The vegetation, soil, and rock affected by land use are important components of forming the water cycle and obtaining clean water sources. The focus of this study is to discuss how to optimize the demands and spatial patterns of different land use types to strengthen ecological and water resources protection more effectively. This study can also provide feasible watershed planning and policy suggestions for managers, which is conducive to the integrity of the river ecosystem and the sustainability of water resources. A watershed-scale land use planning framework integrating a hydrological model and a land use model is established. After quantifying the water retention value of land use types through a hydrological model, a multi-objective land use demands optimization model under various development scenarios is constructed. Moreover, a regional study was completed in the source area of the Songhua River in Northeast China to verify the feasibility of the framework. The results show that the method can be used to optimize land use requirements and obtain future land use maps. The water retention capacity of forestland is strong, about 2500-3000 m3/ha, and there are differences among different forest types. Planning with a single objective of economic development will expand the area of cities and cultivated land, and occupy forests, while multi-objective planning considering ecological and water source protection tends to occupy cultivated land. In the management of river headwaters, it is necessary to establish important forest reserves and strengthen the maintenance of restoration forests. Blindly expanding forest area is not an effective way to protect river headwaters. In conclusion, multi-objective land use planning can effectively balance economic development and water resources protection, and find the limits of urban expansion and key areas of ecological barriers.


Assuntos
Ecossistema , Rios , China , Conservação dos Recursos Naturais , Florestas , Água
2.
Life Sci ; 287: 120126, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34758295

RESUMO

AIMS: Astrocytes re-acquire stem cell potential upon inflammation, thereby becoming a promising source of cells for regenerative medicine. Nanog is an essential transcription factor to maintain the characteristics of stem cells. We aimed to investigate the role of Nanog in astrocyte dedifferentiation. MAIN METHODS: TNF-α was used to induce the dedifferentiation of primary rat spinal cord astrocytes. The expression of immature markers CD44 and Musashi-1 was detected by qRT-PCR and immunofluorescence. The Nanog gene is knocked down by small interference RNA. Nanog expression was measured by qRT-PCR and western blotting. BAY 11-7082 was used to suppress NF-κB signals in astrocytes. NF-κB signaling was evaluated by Western blotting. KEY FINDINGS: Our results showed that TNF-α promoted the re-expression of CD44 and Musashi-1 in astrocytes. Dedifferentiated astrocytes could be induced to differentiate into oligodendrocyte lineage cells indicating that the astrocytes had pluripotency. In addition, TNF-α treatment activated NF-κB signaling pathway and up-regulated Nanog. Knockdown of Nanog reversed the increase of CD44 and Musashi-1 induced by TNF-α without affecting the activation of NF-κB signaling. Importantly, blocking NF-κB signaling by BAY 11-7082 inhibited the expression of immature markers suggesting that TNF-α induces dedifferentiation of astrocytes through the NF-κB signaling pathway. BAY 11-7082 could also inhibit the expression of Nanog, which indicated that Nanog was regulated by NF-κB signaling pathway. SIGNIFICANCE: These findings indicate that activation of the NF-κB signaling pathway through TNF-α leads to astrocytes dedifferentiation via Nanog. These results expand our understanding of the mechanism of astrocytes dedifferentiation.


Assuntos
Astrócitos/metabolismo , Desdiferenciação Celular/fisiologia , NF-kappa B/metabolismo , Proteína Homeobox Nanog/biossíntese , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Desdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Masculino , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
3.
Chin J Nat Med ; 19(10): 741-749, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34688464

RESUMO

During the pathogensis of rheumatoid arthritis (RA), activated RA fibroblast-like synoviocytes (RA-FLSs) combines similar proliferative features as tumor and inflammatory features as osteoarthritis, which eventually leads to joint erosion. Therefore, it is imperative to research and develop new compounds, which can effectively inhibit abnormal activation of RA-FLSs and retard RA progression. Neohesperidin (Neo) is a major active component of flavonoid compounds with anti-inflammation and anti-oxidant properties. In this study, the anti-inflammation, anti-migration, anti-invasion, anti-oxidant and apoptosis-induced effects of Neo on RA-FLSs were explored to investigate the underlying mechanism. The results suggested that Neo decreased the levels of interleukin IL-1ß, IL-6, IL-8, TNF-α, MMP-3, MMP-9 and MMP-13 in FLSs. Moreover, Neo blocked the activation of the MAPK signaling pathway. Furthermore, treatment with Neo induced the apoptosis of FLSs, and inhibited the migration of FLSs. It was also found that Neo reduced the accumulation of reactive oxygen species (ROS) induced by TNF-α. Taken together, our results highlighted that Neo may act as a potential and promising therapeutic drug for the management of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Artrite Reumatoide/tratamento farmacológico , Movimento Celular , Proliferação de Células , Células Cultivadas , Fibroblastos , Hesperidina/análogos & derivados , Humanos , Fator de Necrose Tumoral alfa/genética
4.
Biomed Pharmacother ; 134: 111168, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33395598

RESUMO

Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.


Assuntos
Astrócitos/efeitos dos fármacos , Linhagem da Célula , Transdiferenciação Celular/efeitos dos fármacos , Neuregulina-1/farmacologia , Oligodendroglia/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Células Cultivadas , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Bainha de Mielina/metabolismo , Oligodendroglia/enzimologia , Oligodendroglia/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Medula Espinal/enzimologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/farmacologia
5.
Int Immunopharmacol ; 82: 106367, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32151961

RESUMO

Osteoarthritis (OA) is a chronic inflammatory joint disease without effective drugs. Frizzled 7 (FzD7) binds its ligand Wnt3a through an extracellular cysteine-rich domain (CRD) to transduce the canonical Wnt/ß-catenin signaling pathway, which has been strongly implicated in OA pathogenesis. Effects of recombinant protein of FzD7 CRD on Wnt/ß-catenin signaling and chondral destruction was evaluated in this study. Firstly, increased protein levels of FzD7, Wnt3a and ß-catenin were detected in human OA cartilage implying that the canonical Wnt/ß-catenin signaling mediated by Wnt3a and FzD7 executes an essential role in OA. Then we showed that FzD7 CRD antagonized the Wnt3a/ß-catenin signaling pathway in a dose-dependent manner by binding Wnt3a. In addition, FzD7 CRD increased the expression of glycosaminoglycans (GAGs), Collagen II, aggrecan and reduced the expression of matrix metalloproteinase (MMP)-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5) in Wnt3a-stimulated human chondrocytes. Furthermore, a single intra-articular injection of the FzD7 CRD was efficacious in destabilization of the medial meniscus (DMM) mouse OA model, significantly improving Osteoarthritis Research Society International (OARSI) histology scores compared to mice treated with PBS. The results indicate that the FzD7 CRD exhibits chondroprotective effects by binding Wnt3a to suppress the Wnt3a/ß-catenin signaling. Targeting the FzD7 CRD may be a novel therapy for the treatment of OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...